Product spaces in $n$-manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Convergence in n-Inner Product Spaces

We discuss the notions of strong convergence and weak convergence in n-inner product spaces and study the relation between them. In particular, we show that the strong convergence implies the weak convergence and disprove the converse through a counter-example, by invoking an analogue of Parseval’s identity in n-inner product spaces.

متن کامل

Inner Product Spaces of the Homology Groups of Manifolds

We discuss the inner product spaces of the middle homology groups of manifolds of dimensions 2 and 4. We prove that two compact 2-manifolds are homeomorphic if and only if the inner product spaces of their first homology groups are isomorphic. We outline a proof that every inner product space can be realized as the first homology group of some surface. We conclude by proving that two simply con...

متن کامل

Higher dimensional knot spaces for manifolds with vector cross product

Vector cross product structures on manifolds include symplectic, volume, G2and Spin (7)-structures. We show that their knot spaces have natural symplectic structures, and we relate instantons and branes in these manifolds with holomorphic disks and Lagrangian submanifolds in their knot spaces. For the complex case, the holomorphic volume form on a Calabi-Yau manifold de…nes a complex vector cro...

متن کامل

ON GENERALIZED n-INNER PRODUCT SPACES

(i) ∥x1, x2, . . . , xn∥ = 0 if any only if x1, x2, . . . , xn are linearly dependent, (ii) ∥x1, x2, . . . , xn∥ is invariant under any permutation, (iii) ∥x1, x2, . . . , axn∥ = |a| ∥x1, x2, . . . , xn∥, for any a ∈ R (real), (iv) ∥x1, x2, . . . , xn−1, y + z∥ = ∥x1, x2, . . . , xn−1, y∥ + ∥x1, x2, . . . , xn−1, z∥ is called an n-norm on X and the pair (X, ∥•, . . . , •∥) is called n-normed li...

متن کامل

Frames in 2-inner Product Spaces

In this paper, we introduce the notion of a frame in a 2- inner product space and give some characterizations. These frames can be considered as a usual frame in a Hilbert space, so they share many useful properties with frames.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1959

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1959-0105662-0